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SOFTWARE PROGRAMS FOR ROBOTIC AUTONOMY 
 

The robots we see in films and other media are powerful machines that effectively and 
confidently pursue their goals, whether for good or evil, while they move comfortably through 
the real world. Current real-world robots fall far short of this image. But two DARPA software 
programs are working to bring useful robots closer to reality.  But these are technology efforts, 
not system-level development programs.  Our focus is not on building robots, but on making 
them smarter. 
 

Software for Distributed Robotics (SDR) is developing robot behavior and coordination 
software to allow large groups of extremely resource-limited small robots to perform useful tasks 
in the real world.  We are also developing tools to permit human users to task and query a system 
of robots as a single unit, without considering what any individual robot is doing. 
 

Mobile Autonomous Robot Software (MARS) is an effort to exploit machine learning 
and perception in order to achieve perception-based autonomous vehicle navigation, with 
performance at near-human levels over a wide range of real-world environments, and also to 
provide effective interaction with humans in various roles.  The MARS approach is to exploit 
operator intervention and other tools as "crutches" to achieve revolutionary autonomous 
capabilities.  
 

The focus of both programs is to develop robotic software technologies that provide 
functional capabilities beyond the requirements of any specific application or mission.  These 
generic capabilities often correspond to the basic perception and common sense reasoning 
abilities that every human or animal is born with or develops. Because each of us does these 
things so effortlessly, the need to implement them explicitly in our robots is often overlooked 
when analyzing the requirements of any specific application.  A key element of these programs is 
to articulate those explicit functional and performance requirements that often remain implicit 
and unrecognized. 
 

Many in the robotics community believe that some tasks can be performed most 
effectively by a large number of small, inexpensive, mobile robots.  The concept is inspired in 
part by the perceived "industry" of ant or bee colonies. 
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A body of research exploring the issues in creating and exploiting "swarm" systems has 

been developed over the past 10 to 15 years. To date, however, no distributed robotic systems 
have been deployed, and physical systems of mobile robots, even in a research environment, 
have been limited to no more than 20 or 30 units. 
 

It is possible to have systems with a small number of small robots, or a large number of 
large robots, and SDR technologies can be used in these kinds of systems. The ultimate SDR 
vision, however, is to realize systems with very large numbers of very small robots. 
 

Employing large numbers of robots can provide system-level functionality and 
performance in several ways: 
 

• A search for stationary targets can generally be done faster using multiple searchers. 
 

• A search for targets capable of movement might require multiple robots in different 
places to prevent the targets from evading detection indefinitely.  Other examples are 
building a network of communications relays, providing continuous detection of intruders 
at multiple but physically separated entry points, or simply lifting the four corners of a 
large object simultaneously to move it. 

 
• Using multiple devices reduces the risk of failure in performing tasks that could result in 

a robot's being disabled or destroyed.  An example is the "Pick Up and Carry Away" 
approach to cleaning up unexploded cluster munitions. 

 
• Some missions might require that one device be dedicated to each of a potentially large 

number of specific places.  An example is the "Blow in Place" method for cleaning up 
unexploded ordnance by simultaneously detonating an explosive charge placed next to 
each weapon. 

 
To realize these benefits provided by a system of many robots, SDR is developing 

technologies for group behaviors, coordination, communications, and user interfaces for tasking, 
monitoring, intervention and assessment.  These are the challenges of "many," which provide the 
development agenda for SDR.  

 
Making our robots small can also provide important payoffs.  Small robots are 

lightweight and easy to transport, especially important if the system includes many robots, and 
they can fit into small spaces inaccessible to larger devices.  The challenge is to assemble a 
system capable of performing useful missions by using many small robots, each limited in 
strength, power, communications, sensing and processing abilities.  These challenges of "small" 
provide constraints on the SDR development agenda. 

 
The behavior of the system as a whole depends on the behaviors of each of the individual 

robots.  This relationship can be viewed in several ways. 
 

(more) 
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• In the first view, desired system behavior can be partitioned into sub-behaviors, or tasks, 
and these subtasks allocated to the various robots.  An SDR effort at Carnegie Mellon 
University explores an innovative allocation method using an economic model in which 
robots bid for task assignments.  The winner then has the option of further partitioning 
the task and re-auctioning the subtasks.  

 
• In the second "swarm" view, the desired system level behavior is seen as "emerging" 

when individual robots are brought together, and there is no explicit task allocation.  A 
number of SDR efforts, including one at Sandia National Laboratory, explore this 
paradigm, using analogies with biological or physical processes such as gaseous 
diffusion.  These analogies with natural processes are critical tools for the distributed 
system developer, since we do not know in general how to design individual behaviors 
that will achieve a specified system level goal. 

 
In any event, each robot's actions can be based only on the information available to it 

through its sensors, communications channels and memory storage, which might be extremely 
limited.  For this reason, a final critical input to behavior is randomization, the ability to choose 
between behavior options based on "throwing dice." This allows the ensemble to harness the 
statistical power of large numbers to achieve its goals, but it also means that a specific aspect of 
system performance (for example, finding every single mine within a specified area), cannot be 
guaranteed.  The challenge is to ensure that the system developer and system user understand the 
statistics.  
 

Also, since SDR is focused on the development of software, it is important that we 
explicitly identify to system-level developers exactly what hardware resources we require for the 
behaviors we develop so the necessary sensors, communications, memory and processing will be 
available on deployable hardware.  
 

SDR efforts address both explicit and implicit communications.  
 

• We are developing networking protocols that minimize the energy needed to provide 
"traditional" wireless networking connectivity.  That's the ability of one node to send a 
message to another node while being smart about when to transmit a message, how much 
power to use for each transmission, when to turn on a receiver, and how many "hops" to 
use to route each message.  A topic for future exploration is the exploitation of the 
synergy between the information that the network node software must maintain to 
support connectivity and the information that the robotic controller maintains about its 
physical environment. 

 
• We are also investigating "nontraditional" modes of communications, including the use 

of "pheromone" packets to provide an indication of physical network topology that can 
be used as the basis for behaviors. 

 
A distributed robotic system must provide a coherent model of its functionality and 

performance.  This permits a user to determine what it can do, when to use it, how to configure 
it, how to monitor and control its activity and how to determine what it has accomplished. While 
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this can be done with a traditional command-based user interface, SDR is also exploring implicit 
user interfaces.  For example, HRL Laboratories is developing a scheme where information from 
each robot can be displayed to a soldier on a wearable display.  If a swarm of the robots has 
flooded a building and located a target of interest, the soldier would see an arrow displayed over 
each robot pointing in the direction of the target.  
 

Besides the obvious technical challenges, the process of developing a distributed robotic 
system contains some subtle "gotchas."  
 

• If the system's operation depends on "swarm" behavior, one possible problem is that 
meaningful ensemble behaviors might fail to emerge.  

 
• A second possibility is that the behaviors that do emerge might be wrong, and not 

produce the required system-level functionality.  
 

• While simulation is necessary to support the initial design of behaviors, testing realistic 
numbers of physical robots in real-world environments is absolutely required to 
determine whether the interaction of software with physical sensors and communications 
is the same in the real world as it is in simulation.  

 
• Any deployed system will likely employ tightly-integrated, minimum-cost, mass-

produced robots.  These will certainly be expendable, and probably deliberately 
disposable after a single use.  This implies non-rechargeable primary batteries and 
communications resources that provide only those capabilities required by the application 
itself, which may be minimal to non-existent.  

 
• The "gotcha" is that the testing required to develop a deployable system will require 

robots that can be reused, and this means rechargeable batteries, communications and 
developer interface tools to support problem diagnosis, plus the ability to reprogram the 
robots in the field.  The greatest challenge, therefore, is not the system as it is to be 
deployed; rather, it is the system as it must be configured to support the development 
process. 

 
Over the next two years, the SDR Program will experiment with testbed distributed 

robotic systems to assess mission-level effectiveness in performing indoor reconnaissance, an 
application of increasing importance for Military Operations in Urban Terrain, Special 
Operations, and counter terrorism.  Multiple mission scenario experiments will address multiple 
types of targets and tasks. Examples of targets are humans, sound sources and chemicals.  Tasks 
might include covertly locating a single target, locating places where targets are concentrated, or 
ensuring that there are no targets in a particular area. Lessons learned from these experiments 
should identify the most promising approaches for achieving distributed robotic capabilities in 
deployed systems. The design space for distributed robotic systems is extremely large, and the 
best solution depends sensitively on the application.  Thus it is very important to be able to 
specify the precise details of the desired capability.  
 

(more) 



5-5-5 

How many robots does it take to be "many?"  And how small must a robot be to be 
"small?"  Different communities use the same word with totally different meanings.  For 
example, the Tactical Mobile Robotics program addresses the development of "small" robots, by 
which they mean 20 pounds or less.  The Future Combat Systems Program addresses the 
development of "small" unmanned ground vehicles, by which they mean "able to be transported 
in a C-130", which is 20 tons or less.  The SDR program envisions hundreds or thousands of 
robots, each less than one pound, and potentially much less.  
 

The MARS Program – again, that's Mobile Autonomous Robot Software – addresses the 
development of several technology areas to achieve autonomous capabilities for individual 
robots. These include machine learning, machine perception and the interaction of robots with 
humans. 
 

While MARS was initiated to develop generic robotic software technologies, the 
prominence of the Future Combat Systems program as an obvious transition target has made the 
autonomous navigation of unmanned ground vehicles a primarry focus for the MARS program.  
MARS also addresses other applications including small mobile robots capable of indoor 
operations, humanoid robots, and heterogeneous teams of small ground and air platforms.  
 

Autonomous navigation is important for unmanned vehicles because the alternative, tele-
operation by a remote operator, is expensive in terms of both operator attention and 
communications bandwidth, and it simply doesn't work well in many situations.  A remote driver 
generally can't drive as fast as a vehicle's performance allows, and even at reduced speed, risks 
bumping into obstacles, falling into a ditch, or, in the case of small robots, getting completely 
lost.  
 

Serious DoD efforts to develop unmanned ground vehicle autonomy began in the early to 
mid-1980s with DARPA's Autonomous Land Vehicle Program and have continued. While great 
progress has been made, unmanned vehicles are still not fully capable of driving themselves.  
The challenges that remain are difficult.  The key problem is perception (machine vision), which 
appears to be one of those REALLY hard problems like understanding speech and translation of 
natural language.  
 

MARS will not solve autonomous driving in the next two, four or even eight years.  
Instead, we are focusing on developing tools that can be incorporated into a system to achieve 
two goals.  First, to support the rapid deployment of semi-autonomous capabilities, and second, 
to accelerate the evolution of fully autonomous operation over the next decade or two.  Here are 
some examples of the sorts of tools that will help us learn what it is we need to know to achieve 
these goals:  
 

• When an autonomous unmanned ground vehicle encounters a situation it cannot handle, 
it must rely on operator intervention.  This often means some sort of emergency stop, 
followed by tele-operation.  The result is that the robot's sensors and perception software 
don't get to experience the greatest environmental challenges.  The system software must 
be structured so the robot continues to experience its operating environment even when 
the human operator intervenes. 

(more) 
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• Operator intervention may be required at a number of different levels, including high-

level planning, behavior selection and perception. In each case, the software must provide 
the operator with the information needed to intervene effectively and efficiently.  In some 
cases, the robot may need to maintain an explicit model of the operator's task loading and 
performance.  In all cases the interface design must reflect the operator's needs and 
capabilities. 

 
• Operator intervention should be exploited by the system to support the evolution of 

autonomy in at least two ways: first, by providing input to machine learning to support 
system adaptation, and second, by characterizing those situations when operator 
intervention is necessary because autonomous capabilities fail. This will help establish 
priorities both for near-term system tailoring and for longer-term research. 

 
Finally, measuring the amount of required operator intervention provides a metric for 

judging the system's "level of autonomy" – the less intervention, the higher the level of 
autonomy.  The MARS program goal is to double the average time between required operator 
interventions and cut in half the average operator time required for each intervention.  
 

MARS efforts have advanced development of a number of machine learning techniques 
(supervised, reinforcement, and imitative) and applied them to robotic autonomy in behavior 
selection, behavior parameter tuning and perceptual classification.  Current MARS efforts in 
machine learning focus on structured experimentation to assess and validate specific techniques 
in specific system roles.  
 

• Tools that support the systematic assessment of perception and behavior performance in 
terms of quantitative metrics are absolutely critical to the success of an evolution-based 
approach to the development of autonomy.  The degree of operator intervention required 
constitutes one measure of system autonomy, but other metrics are needed at the 
subsystem level to identify specific research objectives that carry the highest performance 
payoff. 

 
• Every movement of every vehicle represents an opportunity to gather information about 

the path it follows.  If this is done effectively, the information can be used by other 
autonomous vehicles to travel along that same path.  The key is gathering, processing and 
storing the information in a way that permits it to be used later.  A perception-based 
representation of the path is required, recording the vehicle's actions, the characteristics 
of the environment, or both at the highest possible level of abstraction  

 
• Robots must be able to interact with humans in different modes.  For example, a distant 

commander might need a high-level command interface and a "God's-eye view" of a 
group of autonomous vehicles, while a remote operator requires a much more detailed 
interface to a single robot, including high bandwidth tele-operation.  MARS also 
addresses contact with humans in the robot's environment, including teammates, 
bystanders and adversaries.  For example, Robonaut must interact with human astronauts, 
while a vehicle driver must interact with other drivers and with pedestrians. Achieving 
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• human-equivalent interaction capabilities is a potentially critical technology challenge for 
the deployment of autonomous robots. 

 
• Development of sensory perception for unmanned ground vehicles has traditionally 

focused on obstacle detection, terrain classification and the assessment of terrain 
traversability. Meanwhile, sensory perception for weapons systems has focused on 
automatic target recognition. MARS focuses instead on sensing, interpreting and 
understanding environmental features, including humans.  It uses model-based 
approaches and fuses the data from multiple sensors to detect, classify, identify, and track 
both static and moving objects.  

 
The second half of the MARS program focuses on the integration of these tools to 

support system level experimentation.  The idea is to validate the MARS evolutionary approach, 
assess the contributions of each tool to overall capabilities, and identify the technology areas 
offering the greatest promise for future development.  
 

In addition to many technical challenges, developing software for robotic autonomy also 
presents important management challenges.  
 

An autonomous robot, especially an unmanned ground vehicle system, is a complex 
beast, and this is reflected in the system development process. Achieving the desired mobility 
goals focuses attention on the vehicle chassis, engine, transmission, and suspension.  Then 
sensor, computer and communications hardware must be procured or implemented and 
integrated into the system.  Program management focuses on hardware tradeoffs, procurement 
actions and delivery dates. And, as the once-distant date of the promised system demonstration 
looms ever closer, test plans must be developed and test facilities prepared.  
 

Thus it's easy for software, especially autonomy software, to get lost in day-to-day 
program management activities.  And, of course, software is usually viewed from a software 
engineering perspective.  This means selecting and implementing the software development 
infrastructure, designing program modules, writing lines of code, unit test and software 
integration to make sure that all the right messages flow between the right modules at the right 
times.  
 

The problem is that neither the hardware-oriented systems management view nor the 
conventional software engineering view explicitly addresses the interaction of a robotic vehicle 
with its environment – the cognitive domain.  This depends on the subtle interplay between the 
functionality and performance of multiple hardware sensors and perception and behavior 
software modules.  Successful autonomous behavior means the robot shouldn't bump into the 
tree in front of it, not just that all the messages flow correctly between the software modules.  
The tools we are developing in MARS are essentially designed to make the imperative "don't hit 
the tree" an explicit goal for the entire system design process.  
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